

General Description

This demonstration board utilizes the AL1697 Buck-boost LED driver-controller providing a cost effective solution for dimmable in offline high brightness LED applications. This user-friendly evaluation board provides users with quick connection to their different types of LEDs string. The demonstration board can be modified easily to adjust the LED output current and the number of series connected LEDs that are driven.

A bill of materials is included that describes the parts used on this demonstration board. A schematic and layout have also been included along with measured performance characteristics. These materials can be used as a reference design for your products improving your product's time to market.

Key Features

- Dimmable
- Active PFC with power factor >0.85
- High efficiency >75%
- Sing winding
- Low THD
- Good dimmer compatibility
- Low BOM cost

Applications

Mains dimmable application

AL1697 Buck-Boost Specifications

Parameter	Value
AC Input Voltage	230V
Output Power	3.48W
LED Current	145mA
LED Voltage	24V
Power Factor	>0.85
Efficiency	75%
XYZ Dimension	32 x 29 x 10mm
ROHS Compliance	Yes

Evaluation Board

Figure 1: Top View

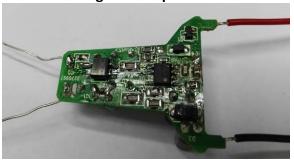


Figure 2: Bottom View

Connection Instructions:

AC+ Input: AC_L
AC- Input: AC N

DC LED+ Output: LED+ (Red)
DC LED- Output: LED- (Black)

Board Layouts

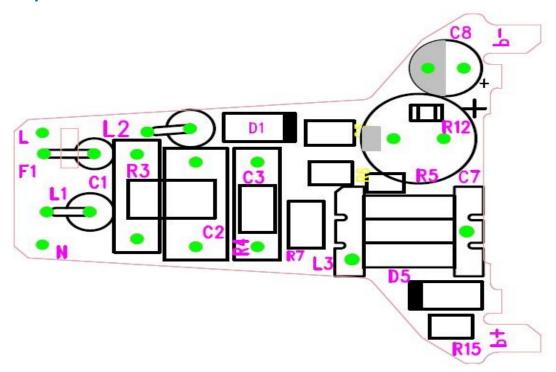
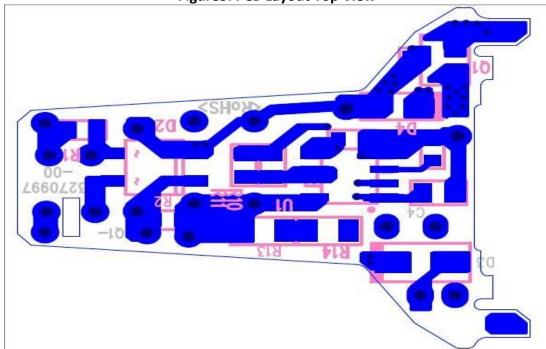



Figure 3: PCB Layout Top View

Figure 4: PCB Layout Bottom View

Quick Start Guide

- 1. Preset the isolated AC source to 230VAC.
- 2. Ensure that the AC source is switched OFF or disconnected.
- 3. Connect the anode wire of the LED string to the LED+ of the evaluation board.
- 4. Connect the cathode wire of the LED string to the LED- terminal of the evaluation board.
- 5. Connect two AC line wires to the AC_L and AC_N terminals on the evaluation board.
- 6. Ensure that the area around the board is clear and safe, and preferably that the board and LEDs are enclosed in a transparent safety cover.
- 7. Turn on the main switch. LED string should light up. DO NOT TOUCH THE BOARD, LEDs OR BARE WIRING.

Caution: This AL1697 evaluation board is a non-isolated design. All terminals carry high voltage during operation!

Schematic

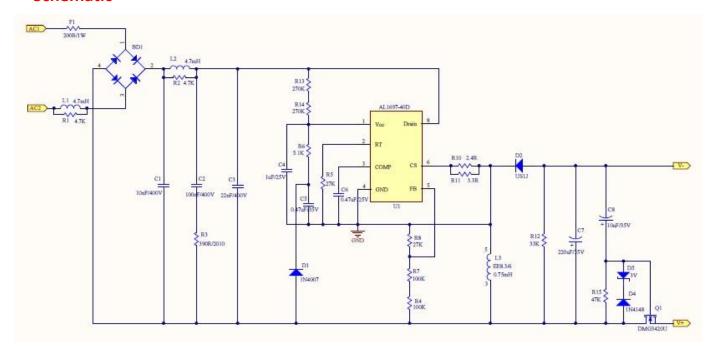


Figure 5: Schematic Circuit

Transformer Design

Bobbin and Core

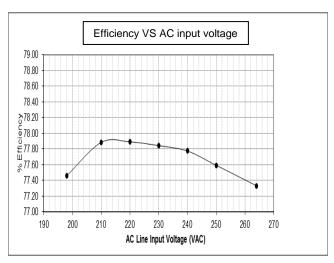
EE8.3/6 Vertical 3+3 pin

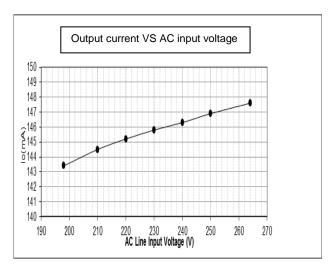
Transformer Parameters

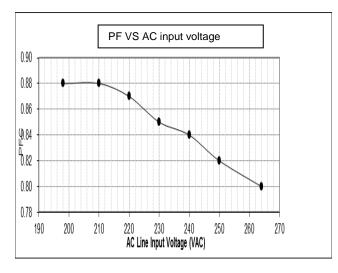
1. Single winding (Pin5-Pin3): Lp=0.75mH, ±5%@1kHz

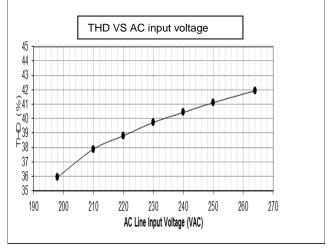
Transformer Winding Construction Diagram

Item	Winding name	Description	
1	Single winding	Start at Pin 5, Wind 120 turns of Φ0.2mm wire and finish on Pin 3	
2	Insulation	3Layers of insulation tape	


Bill of Material

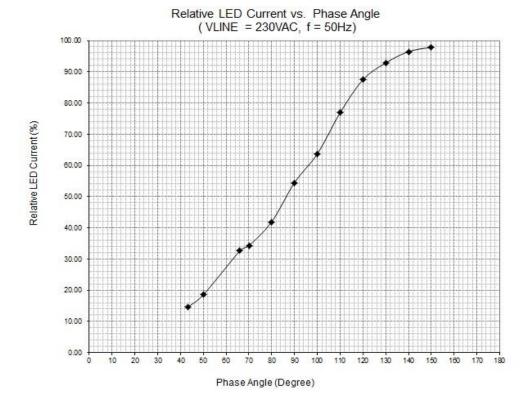

#	Item	Quality	Package	Description		
1	C1	1	DIP	10nF/400V, CL21, Pitch=7.5mm		
2	C2	1	DIP	100nF/400V, CL21, Pitch=7.5mm		
3	C3	1	DIP	22nF/400V, CL21, Pitch=7.5mm		
4	C4	1	0805	Ceramic Cap, 1uF/25V,X7R		
5	C5	1	0805	Ceramic Cap, 0.47uF/35V,X7R		
6	C6	1	0603	Ceramic Cap, 0.47uF/25V,X7R		
7	C7	1	DIP	E-Cap, 130°C,220uF/35V, 8*13mm		
8	C8	1	DIP	E-Cap, 105°ℂ,10uF/35V, 5*7mm		
9	BD1	1	SOPA-4	Rectifier Bridge,MB10S,1A/1000V		
10	D1	1	SOD-123	1N4007, 1A/1000V,Diodes Inc		
11	D2	1	SMA	Fast Recovery Diode, US1J, 1A/600V		
12	D4	1	SOD-123	Switching diode, 1N4148, Diodes Inc		
13	D5	1	SOD-123	DDZ9683,3V Zener, Diodes Inc		
14	RF1	1	DIP	Fuse Resistor,200R, 5%, 1W		
15	R1, R2	2	0805	Resistor, 4.7K, 5%, 1/8W		
16	R3	1	2010	Resistor,390R, 5%, 1W		
17	R5	1	0603	Resistor,27K, 5%, 1/8W		
18	R6	1	1206	Resistor,5.1K, 5%, 1/8W		
19	R4,R7	2	1206	Resistor,100K, 5%, 1/4W		
20	R8	1	0805	Resistor,27K, 5%, 1/8W		
21	R10	1	0805	Resistor,2.4R, 1%, 1/8W		
22	R11	1	0805	Resistor,3.3R, 1%, 1/8W		




23	R12	1	1206	Resistor,33K, 5%, 1/4W
24	R13,R14	2	1206	Resistor,270K, 5%, 1/4W
25	R15	1	0805	Resistor,47K, 5%, 1/8W
26	L1, L2	2	DIP	Color Code Inductor 4.7mH, 0510
27	L3	1	DIP	EE8.3/6, Vertical, 3+3pin, Single Winding, 0.75mH
28	Q1	1	SOT-23	Mosfet, DMG3420U, 20V/4A, Diodes Inc
29	U1	1	SOIC-7	AL1697-40D, Diodes Dimmable IC
30	PCB	1	FR4	FR4 Double layer,32*29mm

Functional Performance

Dimming Test

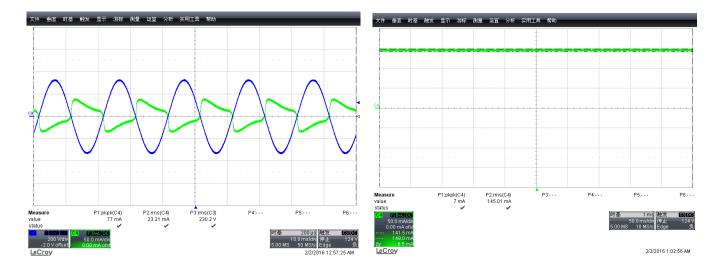

Dimmer compatibility and dimming range

BOX Type	Dimmer Type	lo(A)		Dimming percentage(%)		Flicker or not
Туре		min	max	min	max	or not
	Gira 030700 T 20-525W	40.3	143.3	27.79%	98.83%	No
	Busch Jaeger 6519U T 40-550W					Flicker
	Busch Jaeger 6517 U-101 L 60-400W	7.7	142.1	5.31%	98.00%	Flicker
	PEHA D 80 433 V L 60-300W	6.1	143	4.21%	98.62%	Flicker
Box1	Berker 281902 L 20-315W	0	143.2	0.00%	98.76%	No
	Gira 030000 I01 L60-400W	0	143	0.00%	98.62%	No
	Merten 5771-99 T 20-315W	59.3	142.8	40.90%	98.48%	No
	PEHA 433HAB T 20-315W	41.8	142.7	28.83%	98.41%	No
	ABB STD 50-3 L 60-500W	44.1	143.4	30.41%	98.90%	No
	Berker 2874 T 20-250W	85.6	143.7	59.03%	99.10%	No
	Busch Jaeger 6513U-102 T 40- 420W	58.4	145.2	40.28%	100.14%	No
	Busch Jaeger 6523U-LED L 2- 100W	27.1	141.9	18.69%	97.86%	No
	Berker 2875 L 60-600W	27.1	143.2	18.69%	98.76%	No
	Legrand 775903 T 420W	65.5	142.9	45.17%	98.55%	No
Box2	Merten 5771-99 T 20-315W					Flicker
	Siamens 5TCB 284 T 20-525W	63.4	145.1	43.72%	100.07%	No
	Gira 117600 U 50-420W	54.2	144.3	37.38%	99.52%	No
	Busch-Jae 2247U L 500W	21.2	143.3	14.62%	98.83%	No
	KOPP/Sicherung 8033 L 40-400W					Flicker
	He T46 T 20-315W	48.8	143.2	33.66%	98.76%	No

	Berker 2861 10 U50-420W	53.1	141.9	36.62%	97.86%	No
	Busch-Jaeger 2250U L 60-600W	12.1	143.9	8.34%	99.24%	Flicker
	Jung 254 UDIE1 U50-420W	53.3	142.7	36.76%	98.41%	No
	Jung 1254 UDE U50-420W	42.7	139.3	29.45%	96.07%	No
	Gira 030200/I01 L60-600W	30.3	143.1	20.90%	98.69%	No
Box3	EVERFLOURISH EFM700DC T 25- 150W	60.5	141.8	41.72%	97.79%	No
	IKEA E0902-DIM L25-150W	20.7	143.5	14.28%	98.97%	No
	Busch-Jaeger 2200 L60-400W	42.8	143	29.52%	98.62%	No
	ELSO ATD315 T40-315W	46.6	141	32.14%	97.24%	No
	CLIPSAL 32E450LM L 20-450W					Flicker

Dimming Curve

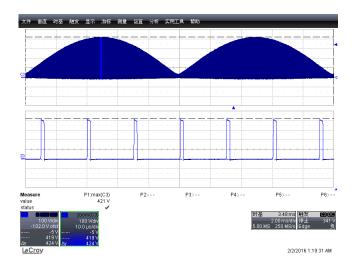
Functional Waveform

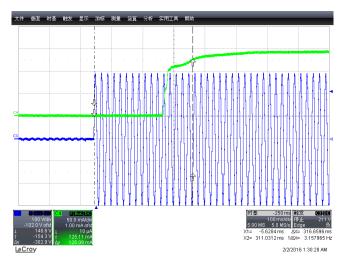

Waveforms:

Input Voltage & Input Current Vin=230V/50Hz

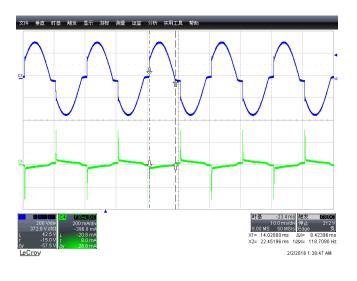
Input Voltage Input Current

LED Current Ripple
Vin=230VAC/50Hz Ripple=7mA

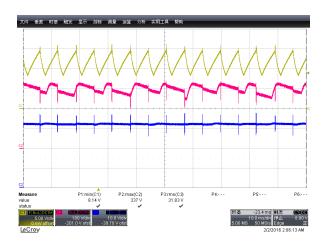

LED Current

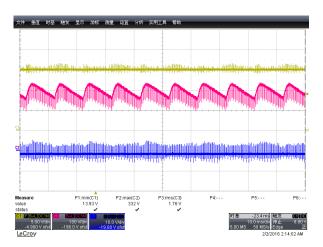


Output Diode V_R Waveform $Vin=265VAC/50Hz \quad V_{RRM_MAX}=424V$ Output Diode V_R

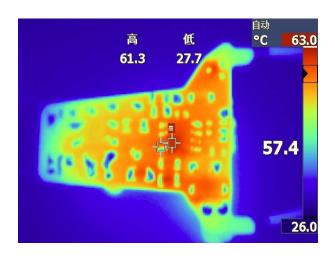


Input AC Current vs Dimmer Phase
Vin=230VAC/50Hz
Max Conduction Angle 151deg
Input Voltage Input Current

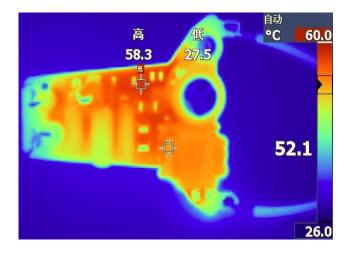

Input AC Current vs Dimmer Phase
Vin=230VAC/50Hz
Mid Conduction Angle 90deg
Input Voltage Input Current



LED Open Protection (Vin=230VAC, Y-VCC, R-Drain, B-Vout)



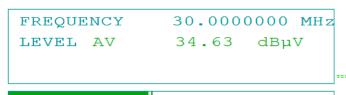
LED Short Protection (Vin=230VAC, Y-VCC, R-Drain, B-Vout)



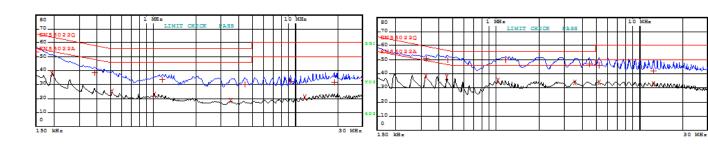
Thermal Test

Top
Vin=230VAC/50Hz Test time=60min

Bottom
Vin=230VAC/50Hz Test time=60min



EMI Conduction Test


Line Terminal

Vin=230VAC/50Hz LIMIT CHECK PASS

Neutral Terminal Vin=230VAC/50Hz LIMIT CHECK PASS

Line Terminal
Vin=230VAC/50Hz Margin>12dB

EDI:	F PEAK LIST (Final	Measurement Resul	ts)			
Tracel:	EN55022Q					
Trace2:	EN55022A					
Trace3:						
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB			
1 Quasi Peak	150 kHz	53.77	-12.22			
2 Average	192.364799253 kHz	38.22	-15.70			
1 Quasi Peak	386.030632509 kHz	38.60	-19.54			
2 Average	510.05878768 kHz	25.25	-20.74			
2 Average	1.01343296123 MHz	22.73	-23.27			
1 Quasi Peak	1.15338124335 MHz	33.30	-22.70			
2 Average	3.48052994318 MHz	18.58	-27.41			
1 Quasi Peak	4.41934946411 MHz	30.31	-25.68			
l Quasi Peak	9.22868887759 MHz	32.19	-27.80			
2 Average	11.7179860284 MHz	20.80	-29.19			
1 Quasi Peak	18.8920426529 MHz	31.72	-28.27			
2 Average	30 MHz	34.57	-15.42			

Neutral Terminal
Vin=230VAC/50Hz Margin>6dB

PD I	T PEAK LIST (Final	Monay-oment Rosyl	± 0.)
Tracel:	ENSSU220	Medicial Result	
Trace2:	EN55022A		
Trace3:			
TRACE	FREQUENCY	LEVEL dB _µ V	DELTA LIMIT dB
1 Quasi Peak	325.955575511 kHz	50.95	-8.60
2 Average	325.955575511 kHz	38.14	-11.41
2 Average	452.651275966 kHz	37.44	-9.38
l Quasi Peak	461.749566613 kHz	50.04	-6.61
2 Average	1.03380296375 MHz	35.14	-10.85
1 Quasi Peak	1.16491505578 MHz	49.70	-6.29
2 Average	3.51533524261 MHz	34.12	-11.88
1 Quasi Peak	4.46354295875 MHz	47.00	-8.99
l Quasi Peak	5.23385515413 MHz	46.13	-13.86
2 Average	5.23385515413 MHz	33.79	-16.20
1 Quasi Peak	12.4388782936 MHz	41.79	-18.21
2 Average	12.4388782936 MHz	33.05	-16.94

AL1697-Buck-Boost-24V145mA User Guide 230V_{AC} Evaluation

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2013, Diodes Incorporated

www.diodes.com